
Variables

This tutorial describes iovar, the basic variable object for ioapiTools. Specifically, you will learn how to
extract a variable from a file, how to read general metadata info from the variable, and how to access iovar's
axes.

1. Extracting a variable
The following assumes that you have already opened a file (see "Opening a File"):

list the variables available in the file
f = listvariables()
['O3', 'CO', 'NO2', 'NO']

extract no2 and co from the IOAPI file and
o3 from the CF netCDF file
no2 = f("no2")
co = f("co")
o3 = g("o3")

If you want to extract a variable that spans multiple files, use the iofilescan object (see "Opening a File"):

o3 spans 3 files
o3_long = fs("o3")

The 'o3' variable, as well as the other variables, is an iovar object, the major repository for data in the
ioapiTools package. In addition to storing the o3 data for this domain in a Numeric array, the iovar variable
has a whole series of attributes that store metadata, including projection info, units, and spatial and temporal
domains, to name a few. The iovar objects also have a long list of methods. Many of these methods are
inherited from the cdms temporary variable, the parent class of the iovar object, but there are also many iovar
specific methods that will be explored in this tutorial and in subsequent tutorials.

 Contents

2. General Metadata

Accessing metadata is essential for effectively analyzing data:

Get general info on size of variable
o3
##
 name : O3
 data: array (24, 1, 70, 58), type = f, 97440 elements
 projection: Lambert Conformal Conic
 object: iovar
##
o3_long
##
 name : O3
 data: array (59, 1, 70, 58), type = f, 239540 elements
 projection: Lambert Conformal Conic

1/4

http://www-pcmdi.llnl.gov/software-portal/Members/azubrow/ioapiTools/index_html

 object: iovar
##

By just typing an iovar variable's name, you will get some key pieces of information: name, array dimensions,
projection type, and object type. The array dimensions correspond to time, level, latitude (or row), and
longitude (or column). In addition, you can see that the array data is a Numeric type "f" or float, and the total
number of elements in the array. Here, the only difference between 'o3' and 'o3_long' is the time dimension,
'o3' spans 24 hours and 'o3_long' spans 59 hours.

To get a much more detailed description of a variable's metadata, you should use the info method:

Dump all the metadata
co.info()

 id: CO
 shape: (24, 1, 70, 58)
 filename:
 missing_value: [1.00000002e+20,]
 comments:
 grid_name: <None>
 grid_type: generic
 .
 .
 .
##

 Contents

3. Axes

One of the key strengths of the iovar object is that every variable has a series of physical axes associated with
the data. These axes describe the data's "location" in the temporal and spatial domains. The axes are objects
themselves and have their own attributes and methods. The axis object has been directly inherited from the
cdms object without modification (see CDAT's information on axes for more info).

Time Axis

get the time axis,
because we are not capturing it, it will simply
print some info to the screen
o3.getTime()
##
 id: time
 Designated a time axis.
 units: hours since 1996−06−24 06:00:00.00
 Length: 24
 First: 0.0
 Last: 23.0
 Other axis attributes:
 calendar: gregorian
 axis: T
 Python id: 42691f0c
##

save time axis
return a list of times, in cdtime object form
timeAxis = o3.getTime()

2/4

http://www-pcmdi.llnl.gov/software-portal/Members/azubrow/ioapiTools/index_html

timeAxis.asComponentTime()
##
 [1996−6−24 6:0:0.0, 1996−6−24 7:0:0.0, 1996−6−24 8:0:0.0,
 1996−6−24 9:0:0.0, 1996−6−24 10:0:0.0, 1996−6−24 11:0:0.0,
 1996−6−24 12:0:0.0, 1996−6−24 13:0:0.0, 1996−6−24 14:0:0.0,
 1996−6−24 15:0:0.0, 1996−6−24 16:0:0.0, 1996−6−24 17:0:0.0,
 1996−6−24 18:0:0.0, 1996−6−24 19:0:0.0, 1996−6−24 20:0:0.0,
 1996−6−24 21:0:0.0, 1996−6−24 22:0:0.0, 1996−6−24 23:0:0.0,
 1996−6−25 0:0:0.0, 1996−6−25 1:0:0.0, 1996−6−25 2:0:0.0,
 1996−6−25 3:0:0.0, 1996−6−25 4:0:0.0, 1996−6−25 5:0:0.0]
##

The getTime method returns the time axis. In the second case, we are assigning that to a variable,
"timeAxis". Then we are using the axis method asComponentTime to return the data in the time axis in
cdtime format. In other words, we now have a list of dates, which corresponds to each temporal slice of the
data.

Spatial Axes

get the level or layer axis (vertical axis)
Not so interesting, seeing that aconc has only 1 layer
o3.getLevel()
##
 id: layer
 Designated a level axis.
 units:
 Length: 1
 First: 1.0
 Last: 1.0
 Other axis attributes:
 positive: down
 var_desc: sigma levels
 standard_name: atmospheric_sigma_coordinate
 axis: Z
 Python id: 4272412c
##

get the latitude axis
o3.getLatitude()
##
 id: yLat
 Designated a latitude axis.
 units: meters
 Length: 70
 First: −378000.0
 Last: 450000.0
 Other axis attributes:
 long_name: y coordinate of projection
 standard_name: projection_y_coordinate
 axis: Y
 topology: linear
 Python id: 4272416c
##

get longitude axis and get a list of all its values
lonAxis = o3.getLongitude()
lonAxis.getValue()
##
[−270000.,−258000.,−246000.,−234000.,−222000.,−210000.,−198000.,−186000.,
 −174000.,−162000.,−150000.,−138000.,−126000.,−114000.,−102000., −90000.,
 −78000., −66000., −54000., −42000., −30000., −18000., −6000., 6000.,

3/4

 18000., 30000., 42000., 54000., 66000., 78000., 90000., 102000.,
 114000., 126000., 138000., 150000., 162000., 174000., 186000., 198000.,
 210000., 222000., 234000., 246000., 258000., 270000., 282000., 294000.,
 306000., 318000., 330000., 342000., 354000., 366000., 378000., 390000.,
 402000., 414000.,]
##

The horizontal axes are in the native coordinate system. I use the term "yLat" to refer to the Latitude and
"xLon" to refer to the Longitude in these native coordinates. In this case, xLon and yLat are in a Lambert
Conformal Conic projection, which means that the native coordinates are in meters from a projection center.
For example, the xLon value of −270,000 means that this cell is 270 km West of the projection center. These
values correspond to the location of the center of the grid cell. In this native coordinate system, the grid cells
are a regular grid of equally spaced cells, in this case 12km x 12km (see "Projection and IOAPI Metadata"
tutorial for more details.

To get the location of the boundaries of the grid cells:

Get the boundaries of the first 2 grid cells
lonAxis.getBounds()[0:2]
##
 [[−276000.,−264000.,]
 [−264000.,−252000.,]]
##

Contents Previous Next

4/4

http://www-pcmdi.llnl.gov/software-portal/Members/azubrow/ioapiTools/open-file
http://www-pcmdi.llnl.gov/software-portal/Members/azubrow/ioapiTools/write-file
http://www-pcmdi.llnl.gov/software-portal/Members/azubrow/ioapiTools/index_html
http://www-pcmdi.llnl.gov/software-portal/Members/azubrow/ioapiTools/open-file
http://www-pcmdi.llnl.gov/software-portal/Members/azubrow/ioapiTools/write-file

	PCMDI Software Portal - Variables

